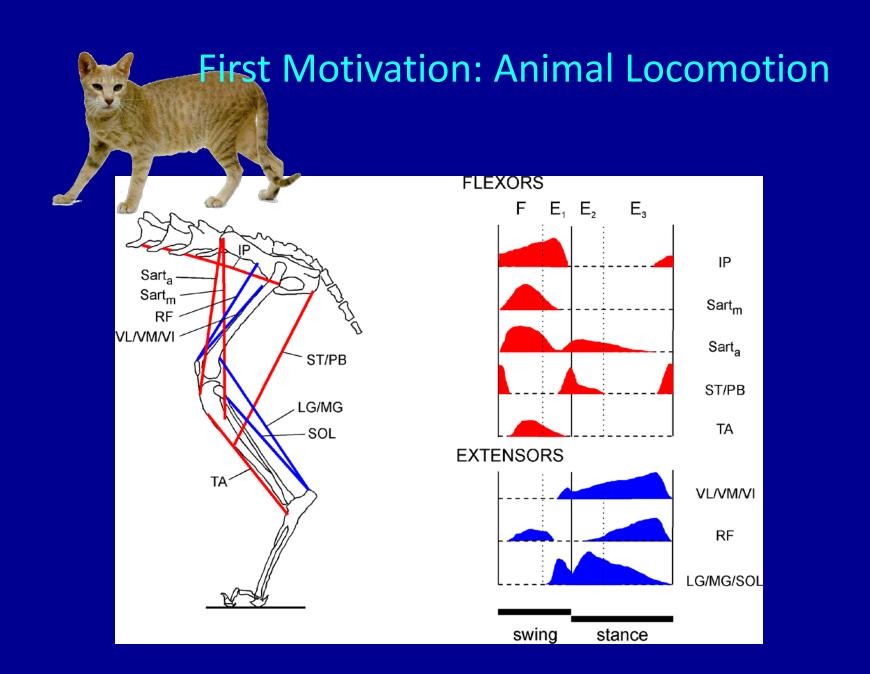
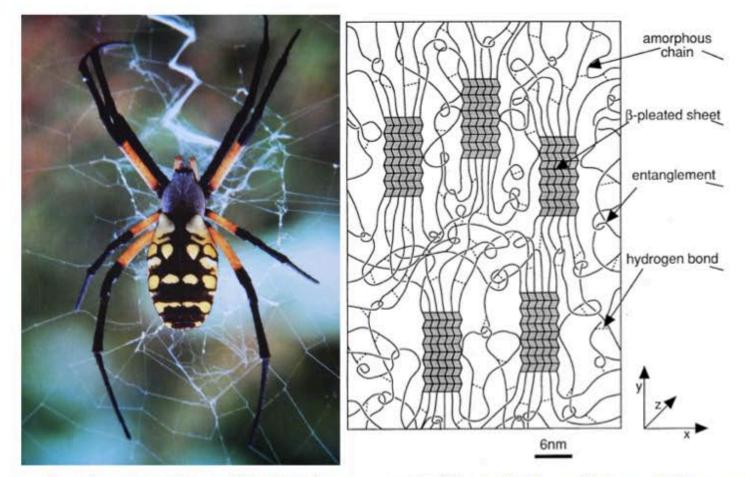


# Tensegrity Engineering for Space Systems bobskelton@ucsd.edu Professor Emeritus, UCSD

TIAS Faculty Fellow Texas A&M

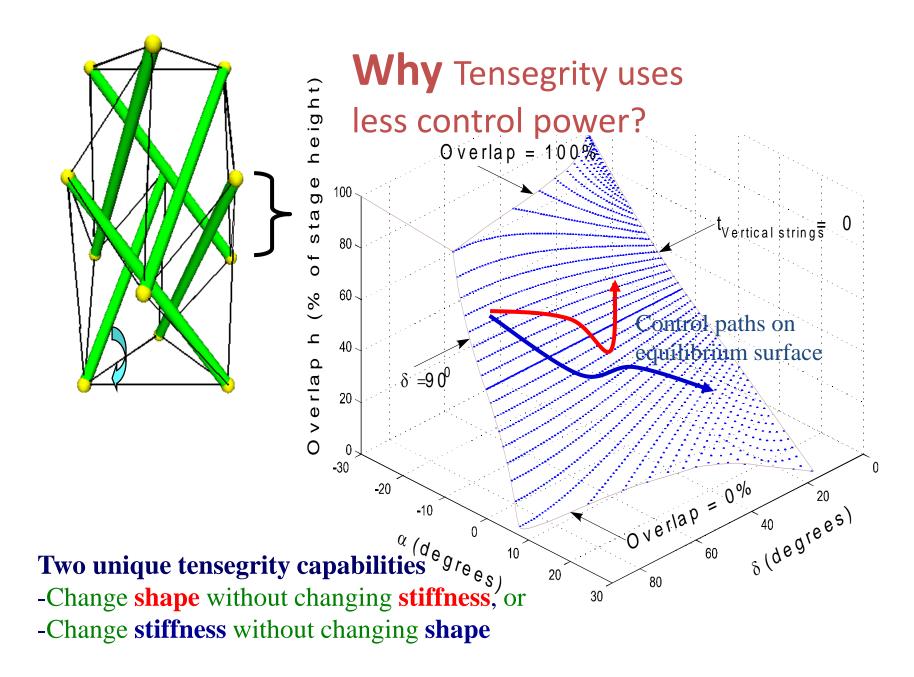


#### The dragline silk of a Nephila Clavipes



The molecular structure of nature's strongest fiber. The rigid bodies are the  $\beta$ -pleated sheets, and the tensile members are the amorphous strands that connect to the  $\beta$ -pleated sheets







# **Class 1 Tensegrity Dynamics**

Let rigid rods and massless elastic strings be connected as

$$\begin{bmatrix} B & R & S \end{bmatrix} = N \begin{bmatrix} C_b^T & C_r^T & C_s^T \end{bmatrix}, \quad Then$$

$$\ddot{N}M + NK(\gamma, \dot{N}, W) = W$$
$$M = C_b^T \hat{m} C_b \frac{1}{12} + C_r^T \hat{m} C_r, \qquad K(\gamma, \dot{N}, W) = C_s^T \hat{\gamma} C_s - C_b^T \hat{\lambda} C_b$$

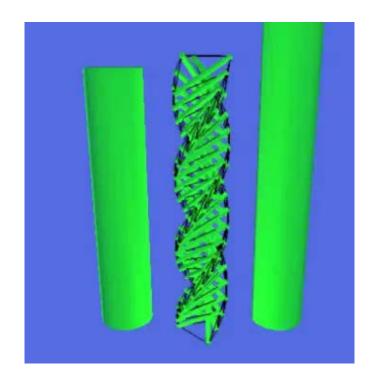
where

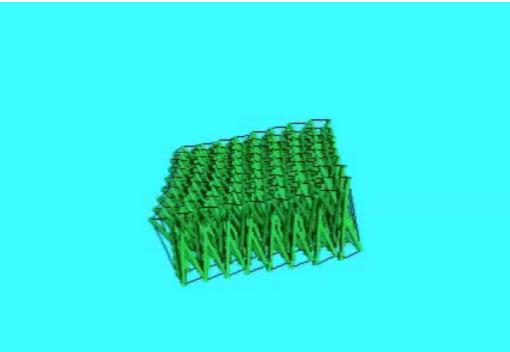
$$-\hat{\lambda} = \left[ \frac{\dot{B}^T \dot{B}}{\hat{B}} \right] \hat{m} \hat{l}^{-2} \frac{1}{12} + \left[ \frac{B^T F(\gamma) C_b^T}{\hat{B}} \right] \hat{l}^{-2} \frac{1}{2}, \qquad F(\gamma) = W - S \hat{\gamma} C_s$$
$$\lambda_i = \frac{\text{force in bar } b_i}{\|b_i\|}, \qquad \gamma_i = \frac{\text{force in string } s_i}{\|s_i\|}$$

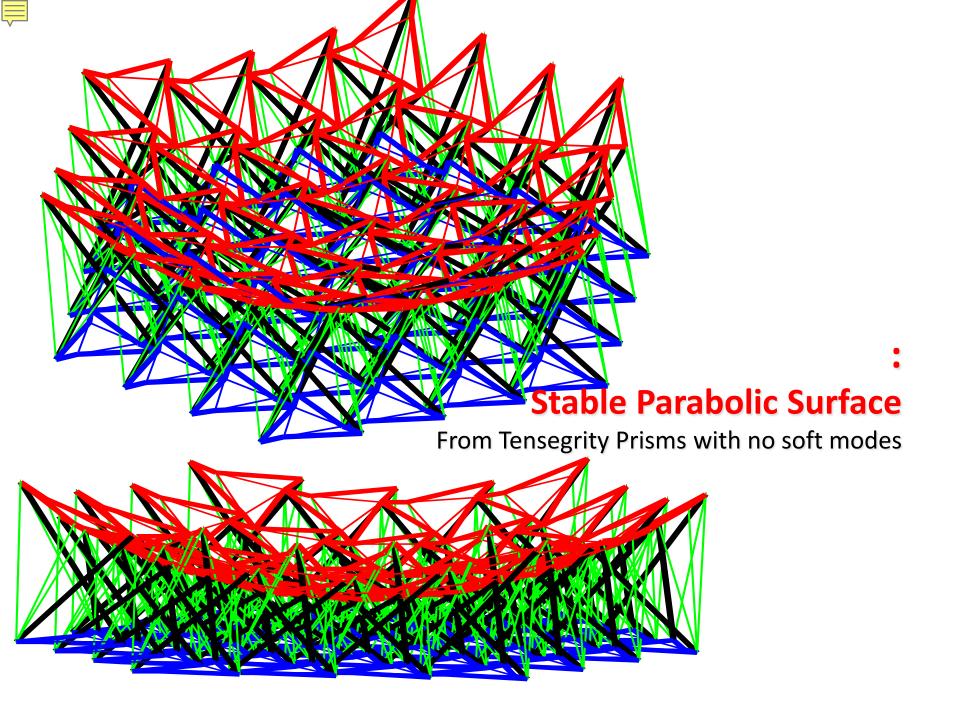
## **Active Form-Finding**

Feedback Control to converge to a specified desired shape Y:  $\ddot{N}M + NK(\gamma) = W$ ,  $K(\gamma) = C^T \Sigma C$ , Y(t) = LN(t)R = current shape  $\Sigma = \left| \begin{array}{cc} -\hat{\lambda} & 0 \\ 0 & \hat{\gamma} \end{array} \right|, \qquad \left[ \begin{array}{cc} B & S \end{array} \right] = NC^T, \quad C^T = \left[ \begin{array}{cc} C_b^T & C_s^T \end{array} \right],$  $\left|\hat{\lambda} = \frac{1}{12}\hat{l}^{-2}\left[6B^{T}(W - S\hat{\gamma}C_{s})C_{b}^{T} - \dot{B}^{T}\dot{B}^{T}\hat{m}\right] = a \text{ diagonal matrix}$ Control objective:  $Y(t) \rightarrow \overline{Y}$ . Find the control  $\gamma$  to cause the error  $\Omega(t) = Y(t) - \overline{Y}$  $\ddot{\Omega} + P\dot{\Omega} + Q\Omega = 0$ to satisfy a stable eq LINEAR in  $\gamma(N(t), \dot{N}(t), W(t))$  !!

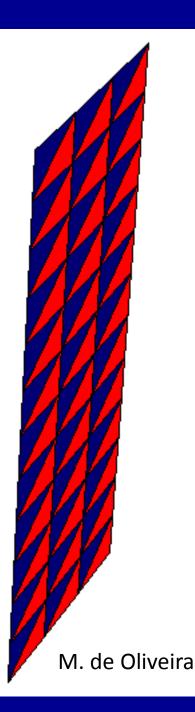










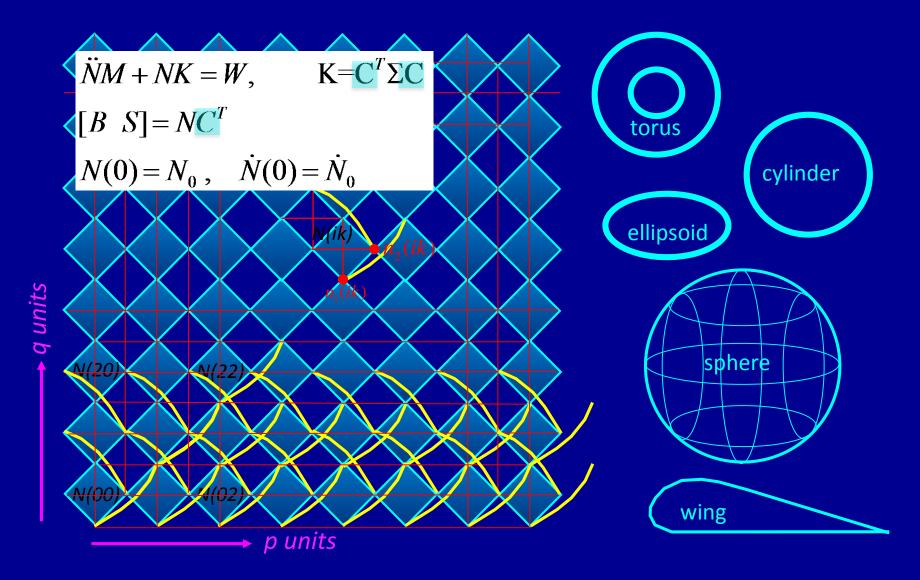


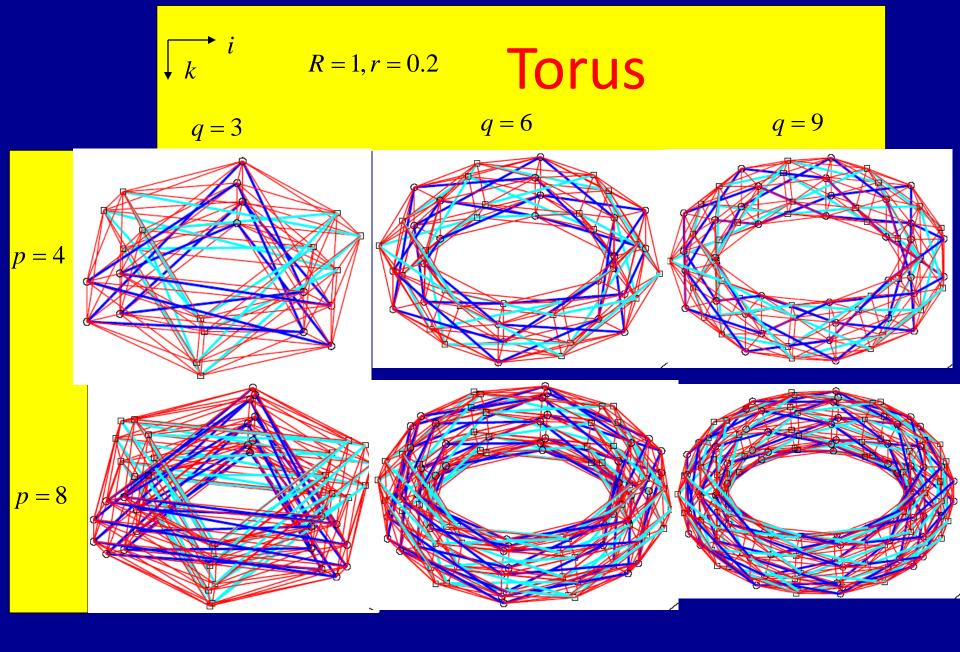
## Integrate Design of Origami/Tensegrity

Tensegrity: 3D structures from 1D objects (High strength, high stability, low mass, deployable)

Origami: 3D structures from 2D objects (low strength, low stability, foldable)

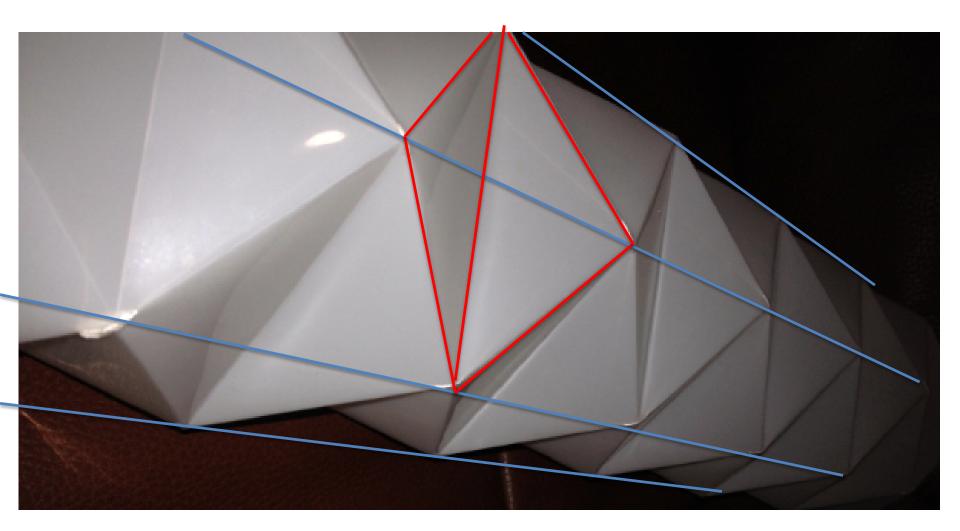
## **Double Helix Tensegrity (DHT)**







## Double Helix Tensegrity (DHT): Exterior View



### **Primal** and **Dual** DHT

Primal DHT: White lines are compressive members Edges are tensile members

Dual DHT: White lines are tensile members (cables) Edges are compressive members

#### Mirror (no spin)

#### **NIAC study** [Skleton, Longman]:

1 km radius torus spin at 1 rpm = 1g

Water shield (slow spin)

Pressurized tensegrity torus (fast spin: 1 rpm)

Solar panels (no spin)

Directed Energy Project



### We Need Tools to Pin the Tail on the Performance Limiting Technology

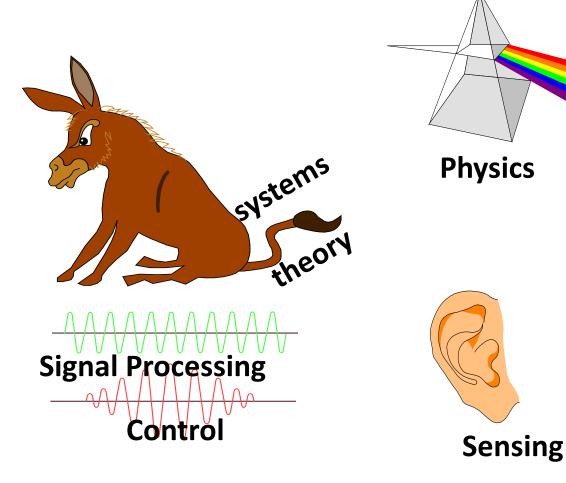
From first principles, Universities teach component technology





Computing





**Critical Issues in System Design** *Given a performance bound we seek to:* 

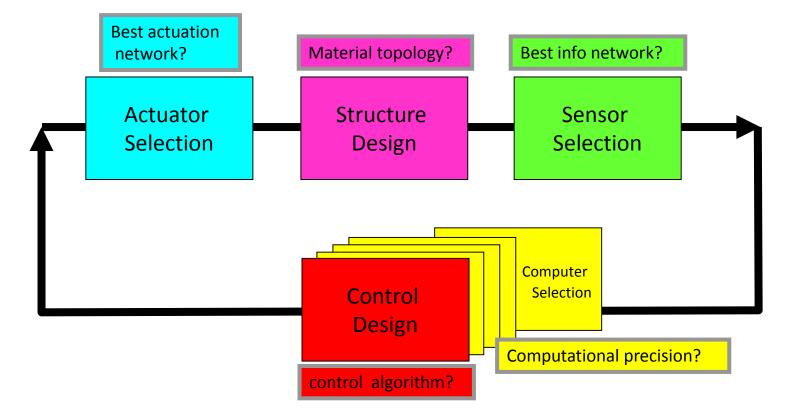
- Min Mass of structure
- Min Energy for control

- Enabling technologies for MME design:
  - Minimal mass structures (tensegrity)
  - Information Architecture (integrate choice of sensor/actuator networks, sensor & computational precisions, and control or estimation laws)
  - Deployment schemes (origami/tensegrity)
  - Model improvements from data

### **Information Architecture**

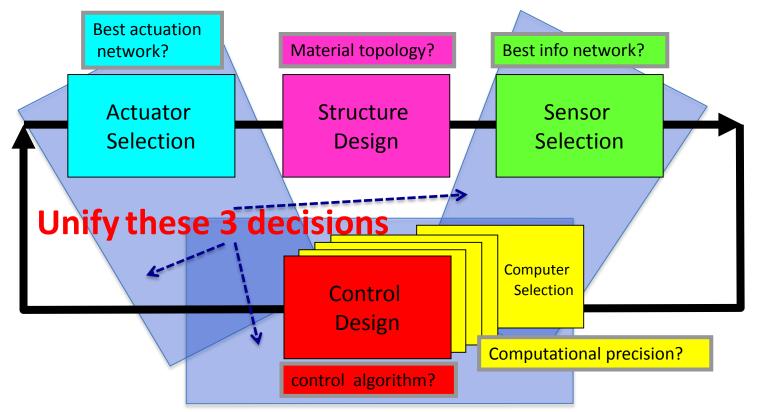
What to measure/actuate/compute? With what precision? With what control law? With what cost?

How to integrate these choices?



### **Information Architecture**

(What to measure/actuate/compute? With what precision? With what control law? With what cost?)



Information Architecture [Skelton 2009] jointly optimizes: 1) control law and 2) sensor/actuator network (proves this is a convex problem if dynamics linear)

### Conclusions

#### (the set of new analytical tools)

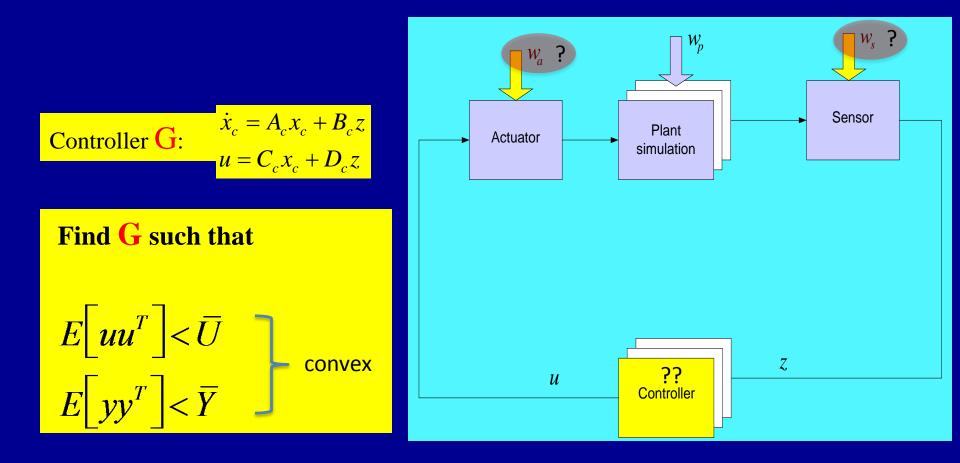
- Control theory has been extended to: select the precision and location required of all instruments while satisfying prespecified bounds on:
  - Total instrument costs
  - Performance errors
  - Control energy
- Analytical tools are available to: integrate origami and tensegrity designs of deployable structures, with shape control.
- Analytical tools are available to: generate all linear models which can identically match the data (a specified number of autocorrelations and cross-correlations of input/output data)



### **Information Architecture and Control**

Plant: 
$$\dot{x}_p = A_p x_p + B_p u + D_p w$$
  
Output:  $y = C_p x_p + B_y u$   
Measurement:  $z = M_p x$   $+ D_z w$ 

$$E\begin{bmatrix} w_a \\ w_s \\ w_p \end{bmatrix} = 0, E\begin{bmatrix} w_a(t) \\ w_s(t) \\ w_p(t) \end{bmatrix} \begin{bmatrix} w_a(\tau) \\ w_s(\tau) \\ w_p(\tau) \end{bmatrix}^T = \begin{bmatrix} W_a & 0 & 0 \\ 0 & W_s & 0 \\ 0 & 0 & W_p \end{bmatrix} \delta(t-\tau)$$





### **Information Architecture and Control**

Plant:

Output:

Measurement:

 $y = C_p x_p + B_y u$ 

$$\dot{x}_{p} = A_{p}x_{p} + B_{p}u + D_{p}w y = C_{p}x_{p} + B_{y}u z = M_{p}x + D_{z}w$$

$$E\begin{bmatrix} w_{a}\\ w_{s}\\ w_{p} \end{bmatrix} = 0, E\begin{bmatrix} w_{a}(t)\\ w_{s}(t)\\ w_{p}(t) \end{bmatrix}\begin{bmatrix} w_{a}(\tau)\\ w_{s}(\tau)\\ w_{p}(\tau) \end{bmatrix}^{T} = \begin{bmatrix} W_{a} & 0 & 0\\ 0 & W_{s} & 0\\ 0 & 0 & W_{p} \end{bmatrix} \delta(t-\tau)$$

